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Notation

We wish to minimize J(x) subject to c(x) = 0 and g(x) ≥ 0.

The functional J : X 7→ < where X is a (real Banach) space of

functions.

The function c : X 7→ Zc and g : X 7→ Zg where Y and Z are also

spaces of real-valued functions.

The relation g(x) ≥ 0 is understood to hold componentwise and

almost everywhere. For a discretization, this means it holds at

the grid points.
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Optimality

Let the Lagrangian be

L(x, λ, η) = J(x)− < λ, c(x) > − < η, g(x) >

The optimality conditions are

∇xL(x, λ, η) = 0

c(x) = 0

< η, g(x) > = 0

η, g(x) ≥ 0

The relation η ≥ 0 is understood in terms of normal cones.

In a reasonable discretization η ≥ 0 is enforced at the grid points.
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If X is finite dimensional, then complementarity holds pointwise.

In other words ηigi(x) = 0.

One may solve the nonlinear system of equations

∇xL(x, λ, η) = 0

c(x) = 0

ηigi(x) = 0, for each i

while enforcing the bounds to attempt to find a minimizer.

It is difficult to manage constraints of the form ηigi(x) = 0, so

these are typically replaced by ηigi(x) = µ with µ > 0.

The path of solutions (x(µ), λ(µ), η(µ)), when it exists, is called

the central path.
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Smoothed NCP Functions

Rather than solving ηigi(x) = 0 and enforcing ηi, gi(x) ≥ 0, find

a zero of a function that enforces both sets of conditions.

Consider the Fischer-Burmeister function

ψ(a, b) = a+ b−
√
a2 + b2.

If ψ(a, b) = 0 then ab = 0 and a, b ≥ 0, but ψ(a, b) is non-

differentiable at the solution.

We may use a parameter µ > 0 to create a smooth function

ψ(a, b;µ) = a+ b−
√
a2 + b2 + 2µ.
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Why we care about smoothed NCP functions

• Smoothed NCP functions are defined at every point.

• Methods that enforce positivity (interior-point) methods, can

be sensitive to the starting point.

• Start strategies for interior point methods can push the start-

ing point away from the initial value.

• Methods based on smoothed NCP functions may become

competitive with interior-point methods.
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The Big Picture

Let F (x, λ, η;µ) = (∇xL(x, λ, η); c(x); Ψ(g(x), η;µ)).

Choose µ0 > 0.

Find an approximate solution F (x, λ, η;µk) = 0.

Choose a positive µk+1 < µk.

Use existing information to guess a solution to F (x, λ, η;µk+1) =

0.

Repeat until converged.
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Summary of Results

Under suitable conditions:

• The central path does exist in function space and may be

followed to a solution.

• An inexact Newton iteration may be used to find a zero of

F (x, λ, η;µk) = 0

• A inexact predictor exists that may be used to guess an an-

swer to F (x, λ, η;µk+1) = 0.
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The Bad News

The theory, as developed, puts fairly strong restrictions on the

class of problems that may be solved.

The example in the technical report is for a problem outside this

class. The authors acknowledge that the theory doesn’t apply

to this problem.

Details needed to implement a practical algorithm have not yet

been published.

10



Dual Variables Revisited

Consider the Lagrangian

L(x, λ, η) = J(x)− < λ, c(x) > − < η, g(x) >

and recall c : X 7→ Zc and g : X 7→ Zg.

Optimality only requires that

< λ, · >: Zc 7→ < and < η, · >: Zg 7→ <

be bounded linear functionals. In other words λ ∈ Z?c and η ∈ Z?g .

Further consideration of structure is needed to determine that

multiplier exist (a.e.) as functions.
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State and Control Variables

Typically, the variables x partition into two sets, the state vari-

ables y and control variables u.

For a typical control problem, the state variables are exactly

those that appear on the left hand side of an ODE, ẏ = f(y, u, t).

A state constraint is a constraint of the form h(y, u, t) ≥ 0.

While most dual variables may be represented as functions, it is

typical for dual variables associated with state constraints to be

measure-valued.

The theory in this paper does not apply to state constraints.
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Inexact Predictors

Let τ = − logµ and recall that v = (x, λ, η). Let v(µ) be the

central path.

The Euler predictor is vk+1 = v(exp(−τk)) + ∆τ dvdτ (exp(−τk)).

The change of variables from µ to τ is meant to encourage µ to

be reduced by a factor, rather than a difference.

The authors work out the theory of this predictor in the presence

of inexact evaluation of the functions.

The authors work out a means of estimating the maximum al-

lowable size of |∆τ |.
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Inexact Newton Methods

Because Newton’s method is begin done in function space, every
iteration involves a discretization error.

Let v = (x, λ, η) The inexact Newton method is

F ′(vk)∆vk = −F (vk) + rk
vk+1 = vk + ∆vk,

where rk is an (unknown) residual vector.

The authors develop the theory of inexact Newton methods in
function space.

They further develop estimators for the maximum allowable size
of rk.
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Adaptive Mesh Refinement

To obtain sufficient accuracy in the Newton iteration (sufficiently

small rk), the authors use adaptive mesh refinement.

The scheme used in M. Weiser’s thesis was to estimate dis-

cretization error by comparing with a higher order polynomial

discretization.

In numerical examples, adaptive refinement concentrates grid

points around discontinuities in the solution and other “interest-

ing” phenomena.
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Affine Invariant Norms

An affine invarient norm is a family of norms {‖ · ‖v} where the

norm may depend on the current point v.

These norms are required to have appropriate invariance prop-

erties under certain classes of linear transformations of the vari-

ables and/or the range space.

Much of the theory in this paper in developed in terms of affine

invariant norms.

While invariance may be useful, the benefit of using these norms

was not demonstrated in the paper, so I won’t discuss these

norms further.
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